

Approximation Algorithms

Lecture 1

Administrative Information

- **Instructors:** Pranabendu Misra & Nithin Varma
- **Lectures:** Thu & Fri; 3:30 PM to 4:45 PM
- **Prerequisites:** Algorithms, Discrete Maths
- **References:**
 - Approximation Algorithms – Vijay Vazirani
 - Design of Approximation Algorithms – David Williamson and David Shmoys
 - Lecture Notes by Chandra Chekuri
- **Evaluation Components:** Assignments (3-4), Midsem, Endsem, Attendance and class participation
- **Collaboration Policy:** You can discuss assignments with other students who take the course. But you must write your own solutions and list your collaborators for each problem.

- In Algorithms course
 - Poly-time algorithms for several interesting problems
 - Different design paradigms – divide and conquer, greedy, dynamic programming
 - NP-completeness and NP-hardness
- Several interesting problems are NP-complete or NP-hard, e.g., Min Vertex Cover, SAT, Travelling Salesman Problem,..

- Exp. time algos. are known for
many of them

- No polynomial time algorithms that solve above exactly unless $P = NP$
- Heuristics that work well in practice, e.g, SAT solvers
- Heuristics do not give provable worst-case guarantees

We want algos. that

- run in poly. time
- output a "good" solution

on every input

- An α -approximation algorithm for an optimization problem runs in poly-time and outputs a solution whose value is within α factor of the value of the optimal solution

- For minimization problems, $\alpha > 1$
- For maximization problems, $\alpha < 1$

eg:- for MAX CLIQUE
 $\frac{2}{n}$ - approx algo.

- Reasons to learn approximation algorithms

- understand the rel.
 difficulty among NP-hard
 optimization problems
 - techniques useful to design heuristics

- {
 eg: min Vertex Cover
 3. 2-approx algo
 the algo outputs a set
 s.t.
 $OPT \leq |V| \leq 2 \cdot OPT$
 \uparrow
 card. of
 min VC

- In this course
 - Design poly-time algorithms that solve problems approximately
 - Strategies for the design of such approx. algorithms – greedy, primal-dual scheme, semi-definite programming, local search,..
 - A bit about hardness of approximation

- Some advanced / recent topics

- Today: Approximation algorithm for SET COVER & MAXIMUM COVERAGE

- SET COVER

- Given universe U of n elements and a family $F = \{F_1, \dots, F_m\}$ of m subsets of U
- Goal: Find the smallest set $I \subseteq [m]$ such that $\bigcup_{i \in I} F_i = U$

Minimization problem

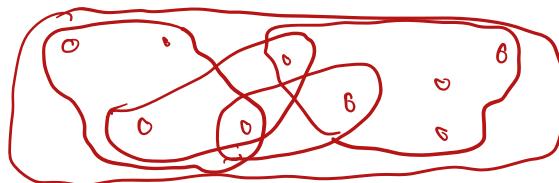
- MAXIMUM COVERAGE

- Same setup as before, also given integer $k \leq m$

- Goal: Select k sets from F such that their union has maximum cardinality

$$U = \{e_1, e_2, \dots, e_n\}$$

$$F_i \subseteq U \quad \forall i \in [m]$$



min VC problem
vertex cover

exercise

Greedy Cover (F, U)

- Initially, all elements in U are uncovered
- Repeat
 - Select the set in F that covers the maximum number of uncovered elements in U
 - Mark elements in the selected set as covered
- Until

→ k sets are selected (MAX COVERAGE)

→ every element in U is covered

(SET COVER)

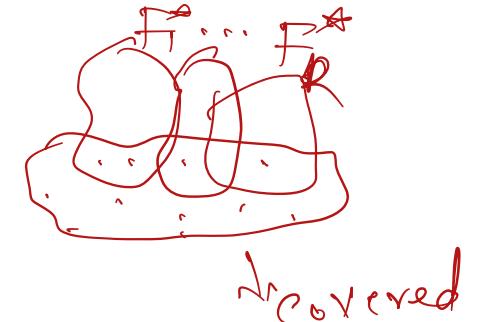
- **Theorem:** Greedy algorithm gives a $(1 - \frac{1}{e})$ approximation to MAX COVERAGE problem
- OPT – optimal value
- x_i - Number of new elements covered in i -th iteration
- $y_i = \sum_{j \in [i]} x_j$; number of elements covered after i iterations
- $z_i = OPT - y_i$

- Claim: $x_{i+1} \geq z_i/k$ for all $i \in [k] \cup \{0\}$

Exercise:
Can you improve to $\frac{z_i}{k-i}$?

Proof:-

At the end of i° iterations,



let us consider an optimal solution

{ for MAX-COVERAGE

$F_1^*, F_2^*, \dots, F_k^*$

$\geq z_i^{\circ}$ elements from \downarrow are not yet covered

$\exists j \in [k]$, F_j^* has $\geq \frac{z_i^{\circ}}{k}$ uncovered elements

$\Rightarrow x_{i+1} \geq \frac{z_i^{\circ}}{k}$

□

- Claim: $y_i \geq \text{OPT} \cdot \left(1 - \left(1 - \frac{1}{k}\right)^i\right)$

Proof: by induction; $i = 1$

$$y_1 \geq \frac{\text{OPT}}{k}$$

complete the inductive argument.

- Proof of Theorem:

$$\begin{aligned}
 \text{Value of Solution} \\
 \text{Output} \} = y_k &\geq \text{OPT} \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \\
 &\geq \text{OPT} \left(1 - \frac{1}{e}\right)
 \end{aligned}$$

- **Theorem:** Greedy algorithm is a $\ln n + 1$ approximation to SET COVER.
- Let k^* denote the optimal value of the SET COVER instance
- Consider a MAX COVERAGE instance with $k = k^*$
- An optimal solution for given SET COVER instance is also an optimal solution for MAX COVERAGE with $k = k^*$
- The value of the optimal solution of MAX COVERAGE instance is n

OPT-MAX-COVERAGE

- $z_i \leq n \cdot \left(1 - \frac{1}{k^*}\right)^i$ for all i

$$\downarrow k$$

$$\begin{aligned}
 z_t &\leq n \cdot \left(1 - \frac{1}{k^*}\right)^{k^* \ln \left(\frac{n}{k^*}\right)} \\
 &\leq n \cdot e^{-\ln \left(\frac{n}{k^*}\right)} \\
 &= k^*
 \end{aligned}$$

- After $t = k^* \ln \frac{n}{k^*}$ iterations, at most k^* elements remain uncovered

⇒ Greedy can go for $\leq k^*$ more iterations

OPT-SET-COVER

- Proof of Theorem:

$$\left. \begin{array}{l} \# \text{ iterations until all} \\ \text{elements covered} \end{array} \right\} \leq k^* \ln \left(\frac{n}{k^*}\right) + k^* \leq k^* (\ln n + 1)$$

- Corollary: If each set has at most d elements, then Greedy Cover gives a $\ln d + 1$ approximation

$$\begin{aligned}
 k^* &\geq \frac{n}{d} \Rightarrow d \geq \frac{n}{k^*} \Rightarrow k^* (\ln d + 1) \\
 &\quad \text{with } \text{circle}
 \end{aligned}$$

Weighted SET COVER problem

- Weighted SET COVER
 - Given universe U of n elements and a family $F = \{F_1, \dots, F_m\}$ of m subsets of U , where set F_i has weight w_i for $i \in [m]$
 - Goal: Find the set $I \subseteq [m]$ that minimizes $\sum_{i \in I} w_i$ such that $\bigcup_{i \in I} F_i = U$ ~~and~~

Unweighted set cover

$$w_1 = w_2 = \dots = w_m = 1$$

Integer Program for Weighted SET COVER

- Variable x_i to indicate the presence or absence of set F_i for $i \in [m]$ in a solution to SET COVER

$$\min \sum_{i \in [m]} w_i x_i$$

$$\sum_{i: e \in F_i} x_i \geq 1 \quad \forall e \in U$$
$$x_i \in \{0, 1\} \quad \forall i \in [m]$$

- Solving the integer program is NP-hard

— reduction from wtd. SET COVER

- Relaxing the integer program

Solve it in poly-time with LP solvers

$$\left\{ \begin{array}{l}
 \min \sum_{i \in [m]} w_i x_i \\
 \sum_{\substack{i: e \in F_i}} x_i \geq 1 \quad \forall e \in U \\
 x_i \geq 0 \quad \forall i \in [m]
 \end{array} \right. \quad (LP)$$

- How to get an integer solution from the fractional solution? Rounding!
- Let f be the maximum number of sets that an element is a part of
 - No element belongs to more than f sets
- Deterministic Rounding

Suppose

- $\{x_i^*\}_{i \in [m]}$

be the fractional optimal

soln. to LP

- Include F_i^* in set cover iff $x_i^* \geq \frac{1}{f}$

- **Claim:** The solution obtained after rounding is a valid SET COVER

for element e

$$\underbrace{x_1 + x_{100} + x_{23} + \dots + x_{500}}_{\leq f} \geq 1$$

- **Claim:** The solution is an f -approximation to SET COVER

→ each variable is rounded up
by a factor of $\leq f$

after rounding, the solution will have
cost $\leq f$ times opt. frac. solution. □

- **Next Time:** Primal Dual Method for SET COVER