Approximation Algorithms

Lecture 1



Administrative Information

e |nstructors: Pranabendu Misra & Nithin Varma
e Lectures: Thu & Fri; 3:30 PM to 4:45 PM
* Prerequisites: Algorithms, Discrete Maths
 References:

* Approximation Algorithms—Vijay Vazirani

e Design of Approximation Algorithms — David Williamson and David Shmoys
 Lecture Notes by Chandra Chekuri

* Evaluation Components: Assignments (3-4), Midsem, Endsem, Attendance and
class participation

* Collaboration Policy: You can discuss assignments with other students who take
the course. But you must write your own solutions and list your collaborators for
each problem.




* In Algorithms course
* Poly-time algorithms for several interesting problems
* Differentdesign paradigms —divide and conquer, greedy, dynamic programming
* NP-completenessand NP-hardness

* Several interesting problems are NP-complete or NP-hard, e.g., Min
Vertex Cover, SAT, Travelling Salesman Problem, ..
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* No polynomial time algorithms that solve above exactly unless P= NP

* Heuristics that work well in practice, e.g, SAT solvers

* Heuristics do not give provable worst-case guarantees
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e An a-approximation algorithm for an optimization problem runs in poly-
time and outputs a solution whose value is within a factor of the value of
the optimal solution

e For minimization problems,a >1 — %71 M\ (N \/Qﬁe;q CO\/QY
e For maximization problems, a < 1 =
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* Reasons to learn approximation algorithms
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* |nthis course

e Design poly-time algorithms that solve problems approximately

 Strategies for the design of such approx. algorithms — greedy, primal-dual scheme,
semi-definite programming, local search,..

e Abitabouthardness of approximation
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* Today: Approximation algorithm for SET COVER & MAXIMUM COVERAGE
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* Given universe U of nelementsandafamily F = {Fy, ... F,, } of m subsets of U
* Goal: Find the smallestsetI € [m]suchthatU;g F; = U

- / SO ’
M[V\\\M\Z&hOﬂELQ t‘gw = :> V@(v\@( C/o\k{
v'o UM -

* MAXIMUM COK/ERAGE

* Same setup as before, also given integerk < m
* Goal: Select k sets from F such that their union has maximum cardinality
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Greedy Cover (F, U)
e \nch &&ly, all eloments U ave  uncovexred

* Repeat
e Selectthesetin F that covers the maximum number of uncovered elementsin U
e Mark elements in the selected set as covered
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* Theorem: Greedy algorithm givesa (1 — i) approximation to MAX
COVERAGE problem

 OPT —optimal value
* x; - Number of new elements covered in i-th iteration

*y; = Z]-E[i] X; - number of elements covered afteri iterations
*Z; = OPT — Vi
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e Claim: y; > OPT- (1 -~ (1 — %)l>
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* Proof of Theorem:
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* Theorem: Creedy algorithmisalnn + 1 approximation to SET COVER.

e Let k™ denote the optimal value of the SET COVER instance

 Considera MAX COVERAGE instancewithk = k*

* Anoptimal solution for given SET COVER instance is also an optimal
solution for MAX COVERACE with k = k*

* The value of the optimal solution of MAX COVERAGE instance isn
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* Corollary: If each set has at most d elements, then Greedy Cover givesalnd + 1
approximation

K2 L = 4 o2 L K&UMOVH)

d #
- &>



Weighted SET COVER problem

* Weighted SET COVER

* Givenuniverse U of nelementsanda family F = {F;, ... E,,} of m subsets of U,
where set F; has weightw; fori € [m]

* Goal: Find the set] € [m] that minimizes ).;¢; w; such that U F; = U sl
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Integer Program for Weighted SET COVER

* Variable x; to indicate the presence or absence of set F;
fori € [m]inasolution to SET COVER
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* Solving the integer program is NP-hard
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* Relaxing the integer program
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* How to getan integer solution from the fractional solution? Rounding!

* Let f be the maximum number of sets that an elementis a part of
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* Deterministic Rounding f
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* Claim: The solution obtained after roundingis a valid SET COVER
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* Claim: The solution isan f-approximation to SET COVER
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 Next Time: Primal Dual Method for SET COVER



